
Page 1/7

Building a generic robot engine using the Fischer Technik
ROBO Pro environment
This document describes the ROBO Pro program I developed to run my BumberBot model. The

BumberBot is based on the ROBO Mobile Set Light Seeker model. My aim was to build a generic robot

engine and have the entire robot behavior defined in tables and not in programming code. First I

discuss the underlying foundation of the program, a finite state machine. Then I present the state

transition diagram that describes the BumberBot behavior. I show how the state transition diagram is

translated into a table. I demonstrate how that table is translated into ROBO Pro List elements. Then I

explain the algorithm that takes the List elements input to bring the BumberBot alive. Finally, I conclude

with some lessons learned and a short wish list for the next version of the ROBO Pro environment.

Finite state machine

I choose a finite state machine as the underlying

foundation. A finite state machine is a model of behavior

composed of a finite number of states, transitions

between those states, and actions. Events trigger the

transitions. Typical events for the BumberBot are:

'collision detected' and 'light detected'. A special event I

introduced is a timer variable which value has reached

zero: 'Time-out'. I used this event to set the duration of

motions of the BumberBot, e.g. to make a 90 degree left

turn.

Figure 1 shows the entire state transition diagram describing the behavior of the BumberBot. The main

operation of the BumberBot is defined by state 1 and 2. In state 1 the robot drives straight for 5 seconds.

In state 2 the robot makes a 270 degree turn. The initial state for the program is state 2. But as the timer

variable has not been set, the program automatically activates state 1 and makes the robot drive straight

ahead and sets the timer variable to 500ms. The robot flips out of state 1 and 2 when light is detected or

when a collision occurs. For a collision state 20 is activated (robot stops, time variable is set to 50ms).

When light is detected state 11 is activated (robot homes in on the light, time variable is set to 125ms).

With a frontal collision one of the two switches up front is always pressed first. To be able to detect the

frontal decision I implemented a 50ms time delay between state 20 and 21 is needed. The 125ms time

value when light is followed serves not to loose the follow state when the light detection is briefly

interrupted.

Page 2/7

29

29

1
Seek

Straight

20
Collision

Entry

21
Collision
Action

22
Collision
Reverse

24
Back-off to

the right

26
Back-off to

the left

29
Collision

Final

12
Follow

Time-Out

11
Follow
Light

Start

2
Seek

Turn 270º

Single Transition

Three transitions (left, right, left and right)

Legend

Light detected
Follow

Light detected
Follow

Time-out
-

Collision
Stop

Collision
Stop

Collision
Stop

Time-out
- Time-out

Go straight

Time-out
Go straight

Time-out
Turn

Time-out
Go straight

Light detected
Follow

Time-out
Go straight

Time-out
Left 90º

Rear collision
Turn 90ºTime-out

Right 45º

Time-out
Left 30º

Rear collision
Right 45º

Rear collision
Left 30º

Figure 1 BumberBot State Transition Diagram

Translating the State Transition Diagram into a transition table

I translated the state transition diagram into the transition table as shown below. Each row in the table

represents a transition. A speed of '7' indicates that the engine should not be affected, i.e. continue to

run as it does.

Bit position 64 32 16 8 4 2 1 128 16 8 1 1 256

 Event Schema Movement in 10ms

 T I3 I4 I5 I7 I8 M1 - Right M2 - Left

Description State T
im

er

F
rR

ig
h

t

F
rL

ef
t

R
ea

r

T
rR

ig
h

t

T
rL

ef
t

D
ir

ec
ti

o
n

S
p

ee
d

D
ir

ec
ti

o
n

S
p

ee
d

T
im

er
 V

al
u

e
Next

State

Collision detection 1 1 1 0 0 50 20

 1 1 0 0 50 20

 1 1 0 0 50 20

Seek - Straight 1 1 1 2 2 895 2

Collision detection 2 1 1 0 0 50 20

 2 1 0 0 50 20

 2 1 0 0 50 20

Seek - Turn 2 1 4 4 500 1

Collision Entry 20 1 7 7 0 21

Collision Frontal 21 1 1 1 3 1 3 75 22

Collision Left side 21 1 1 3 1 2 75 24

Collision Right side 21 1 1 2 1 3 75 26

Collision Fake 21 1 4 4 500 1

Frontal C - Back off 22 1 3 1 3 150 29

Left side Collision 24 1 1 3 3 85 29

Page 3/7

Bit position 64 32 16 8 4 2 1 128 16 8 1 1 256

 Event Schema Movement in 10ms

 T I3 I4 I5 I7 I8 M1 - Right M2 - Left

Description State T
im

er

F
rR

ig
h

t

F
rL

ef
t

R
ea

r

T
rR

ig
h

t

T
rL

ef
t

D
ir

ec
ti

o
n

S
p

ee
d

D
ir

ec
ti

o
n

S
p

ee
d

T
im

er
 V

al
u

e

Next

State

Right side Collision 26 1 3 1 3 60 29

Collision Rear 22 1 3 1 3 150 29

 24 1 1 3 3 85 29

 26 1 3 1 3 60 29

Collision handling 29 1 4 4 500 1

Seek Light 1 1 1 5 5 125 11

 1 1 1 5 125 11

 1 1 5 1 125 11

Seek Light 2 1 1 5 5 125 11

 2 1 3 5 125 11

 2 1 5 3 125 11

Collision detection 11 1 1 0 0 50 20

 11 1 0 0 50 20

 11 1 0 0 50 20

Seek Light 11 1 1 5 5 125 11

 11 1 3 5 125 11

 11 1 5 3 125 11

Follow Light 11 1 7 7 0 12

Still Follow? 12 1 1 5 5 125 11

 12 1 3 5 125 11

 12 1 5 3 125 11

 12 1 4 4 500 1

Translating the table into ROBO Pro List elements

It would be possible to define a list element for each column of the transition table. That would lead to

13 different list elements and some rather cumbersome coding. Instead I decided to combine columns

into three lists. One for the current state and event (orange), one for the action and next state (green) and

one for the value of the timer variable (blue). The colors refer to the bit positions shown in the header of

the transition table.

The list element provides 16 bits of storage. I encoded the three list elements as depicted in Figure 2.

These values can be manipulated using binary operators as 'left shift', 'right shift' and 'AND'. The AND

operator is needed to filter out bits and to verify if the current event mask matches an event held in the

event table. In the ROBO Pro environment a left shift is accomplished by dividing the value by a power

of 2. Right shift by multiplying by a power of 2. A bitwise AND operator is not directly available in the

ROBO Pro environment. I had to write a subprogram to perform this function.

Page 4/7

14 13 12 11 10 9 8 7 6 5 4 3 2 1 015

Current State Event MaskEvent list

Next State Action Right EngineAction list Action Left Engine

New Timer ValueTimer list

Figure 2 List element encoding

Using the encoding scheme on the first row of the transition table results in these values: event - 88,

action - 5120, timer - 50.

Algorithm of the Main Program

Figure 3 BumberBot Main Program

Figure 4 Detect Event

Now that I explained the underlying principles let's have a look at the algorithm of the main program of

the generic engine. Figure 3 shows the main flow of the generic engine. It consists of three key steps.

• Step 1 is to detect the current event.

• If an event is detected the engine continues in step 2 to determine the action that needs to be

executed.

• If an action is found the engine continues in step 3 to execute the action, set the timer variable to its

new value and set the new state of the BumberBot.

Page 5/7

The FlashLights routine is a gimmick not relevant for the functioning of the generic engine.

Hence, the main program is non-modal. It continues to run through the steps. Nowhere it waits for

input.

Subprograms

The DetectEvent routine is fairly straightforward as depicted in Figure 4. It checks all the inputs. If an

input is detected the according bit in the current event variable is set to 1.

The essential routine of the generic engine is shown in Figure 5. It runs through all entries of the event

list. For each entry that corresponds with the current state (variable ST) it checks if the current event

matches the event necessary for the transition. The reasoning here goes like this: if the current event

encompasses all or more of the event bits indicated in the row at hand the row number indicates the

transition that needs to take place. This is accomplished in three steps. First the state is filtered out

(event list AND 63), then the current event is filtered out (event list AND current event) and finally the

routine checks if the remaining bits correspond to the bit mask indicated in the event list. Hence, the

order in which the transitions are held in the event list determines the behavior. The action of the first

row in the list where all the event bits are covered by the bits of the current event is executed.

Figure 5 Determine Action

The final subroutine (Figure 6) is to execute the action found. It uses the shift left and bitwise AND

operations to derive the speed of both engines and the next state from the action list. It uses the timer

list to set the new timer value.

Page 6/7

Figure 6 Execute Action

Lessons learned

The BumberBot shows that it is possible to build a relatively 'low weight' generic engine to implement

complex robotic behavior using the Fischer Technik ROBO Pro environment. The program would have

been a lot more complex and a lot more difficult to maintain if I would have hard coded the behavior.

I discovered that the timer variable is not accurate enough to use for robot motions. As the battery

power decreases a turn of 90 degrees becomes 80 degrees and less. A next version of the generic engine

will hold two other count-down events. One if the pulse counter for the left engine reaches zero and one

if the pulse counter for the right engine reaches zero. The transition table will also be expanded with

two columns holding the values to set for the left and right pulse counters.

I was a little bit puzzled by the behavior of the ROBO Pro engine commands. I would have expected a

value of zero to result in an engine stop and a negative value in a counter clockwise motion. But the

Page 7/7

ROBO Pro environment requires different commands for these actions. A next version of the generic

engine will include a subprogram that encapsulates this.

The bitwise AND operator I implemented consumes on average 120 CPU cycles. This would be only 1

CPU cycle if the ROBO Pro environment would have provided access to the native bitwise AND

instruction of the Renesas M30245 microprocessor. On average I estimate that my program runs 700

times slower than when I could have used the built-in operator. That is significant!

I would like to thank FischerTechnik and Knoblauch for providing the ROBO Interface and

programming environment. I enjoy the technology very much. I would like to ask FischerTechnik and

Knoblauch to consider to add the native bitwise operators (AND, OR and XOR) in a next release of the

ROBO Pro environment so I can speed up my generic engine.

Guido van der Harst

8 February 2009, Doorn, The Netherlands

guido_ruis@hotmail.com

